A new insight into ductile fracture of ultrafine-grained Al-Mg alloys

نویسندگان

  • Hailiang Yu
  • A. Kiet Tieu
  • Cheng Lu
  • Xiong Liu
  • Mao Liu
  • Ajit Godbole
  • Charlie Kong
  • Qinghua Qin
چکیده

It is well known that when coarse-grained metals undergo severe plastic deformation to be transformed into nano-grained metals, their ductility is reduced. However, there are no ductile fracture criteria developed based on grain refinement. In this paper, we propose a new relationship between ductile fracture and grain refinement during deformation, considering factors besides void nucleation and growth. Ultrafine-grained Al-Mg alloy sheets were fabricated using different rolling techniques at room and cryogenic temperatures. It is proposed for the first time that features of the microstructure near the fracture surface can be used to explain the ductile fracture post necking directly. We found that as grains are refined to a nano size which approaches the theoretical minimum achievable value, the material becomes brittle at the shear band zone. This may explain the tendency for ductile fracture in metals under plastic deformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine-Grained Al-Mg Alloy

The tensile fractures of ultrafine-grained (UFG) Al-Mg alloy with a bimodal grain size were investigated at the microand macroscale using transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with focused ion beam (FIB), and optical microscopy. The nanoscale voids and crack behaviors near the tensile fracture surfaces were revealed in various scale ranges and provi...

متن کامل

Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys

The ultrafine grained (UFGed) 1050 Al plates with a thickness of 2 mm, which were produced by the accumulative roll bonding technique after five cycles, were friction stir butt welded to 2 mm thick 6061-T6 Al alloy plates at a different revolutionary pitch that varied from 0.5 to 1.25 mm/rev. In the stir zone, the initial nano-sized lamellar structure of the UFGed 1050 Al alloy plate transforme...

متن کامل

Fatigue Behavior of an Ultrafine-Grained Al-Mg-Si Alloy Processed by High-Pressure Torsion

The paper presents the evaluation of the mechanical and fatigue properties of an ultrafine-grained (UFG) Al 6061 alloy processed by high-pressure torsion (HPT) at room temperature (RT). A comparison is made between the UFG state and the coarse-grained (CG) one subjected to the conventional aging treatment Т6. It is shown that HPT processing leads to the formation of the UFG microstructure with ...

متن کامل

Microstructural evolution , strengthening and thermal stability of an ultrafine - grained Al - Cu - Mg alloy

To gain insight into the origin of the ultra-high strength of ultrafine-grained (UFG) alloys, the solute clustering, precipitation phenomena, and microstructural evolutions were studied in an UFG Al-4.63Cu-1.51Mg (wt.%) alloy (AA2024) processed by high-pressure torsion (HPT). The thermal analysis was performed using differential scanning calorimetry. The microstructures, internal microstrains a...

متن کامل

The effect of Zn element addition on dissimilar Al6061/AZ31 friction stir welded joints

In this study, friction stir butt welding of Mg and Al alloys with applying Zn interlayer was performed. To obtain optimum condition, a combination of two travel and three rotation speeds were selected. Mg-Zn and Mg-Al-Zn IMCs, Al solid solution and residual Zn, were the most common phases in the stirred zone, which eliminated the formation of Al-Mg intermetallics. The maximum mechanical proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015